Algorithmic Collusion in Multi-Product Pricing

Karsten Hansen, Kohei Hayashida, Kanishka Misra, and Mallesh Pai

Rady School of Management, UC San Diego

December 18, 2024

Basics Exter

Introduction

Extension: multi-product firms

Simplification evidence

Implications 00000000 Alternative simplification

Summary O

Use of AI methods is ubiquitous in pricing

- Pricing decisions are being automated
 - Real-time supply and demand shocks
 - Price discrimination
 - Demand learning
- Demand learning: pricing with unknown demand curves
 - Reinforcement learning: learn and earn

Literature we add to

Market outcomes with algorithmic sellers

JULY 25, 2022 · 5:00 AM ET

by Heather Vogell, ProPublica, with data analysis by Haru Coryne, ProPublica, and Ryan Little

Oct. 15, 2022, 5 a.m. EDT

ALGORITHMS AND COLLUSION

Competition policy in the digital age

Introduction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary 0

Algorithmic price competition: the fear of Al

- "Robo-sellers will increase the risk that oligopolists will coordinate prices above the competitive level" Mehra (2015)
- Why is this non-trivial?
 - Algorithms: written and analyzed in stationary environments
 - Algorithmic competition: environment is endogenous/nonstationary

Algorithmic collusion \equiv Market prices are supra-competitive

- Can independent algorithms collude?
- Should policymakers be concerned?

Introduction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

Algorithmic price competition: the fear of Al

Can algorithms coordinate prices above the competitive levels?

- Yes! independent algorithms can lead to supra-competitive prices
 - Mechanisms in simulated markets: *facilitate repeated games* (Calvano et al 2020, Kline 2021), *correlated learning* (Hansen et al 2021), *timing* (Mackay and Brown 2021), *sophistication* (Asker et al 2021), *hub and spoke* (Harrington 2021)
 - Empirical: German gasoline markets (Assad et al 2023), Multifamily rentals (Calder-Wang and Kim 2024), E-commerce (Musolff 2024)
 - Theory: Prisoner's dilemma (Banchio Mantegazza 2022)

Current research

- When independent algorithms collude?
- Markets for policymakers to study

Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

In this study, we

Introduction

- Investigate algorithmic pricing in multi-product sellers
 - Multi-product pricing is high dimensional problem / computationally hard
- Show evidence that multi-product firms use simplified pricing algorithm
 - Ignoring cross price elasticity / product-by-product optimization
- Show algorithmic collusion is less likely to sustain when multi-product firms employ single-product pricing algorithm
 - ... both in theory and simulation
 - If firm could employ sophisticated (multi-product) algorithm, algorithmic collusion returns

Implications

Alternative simplification

Summary 0

Overview of talk

- Current knowledge: market outcomes with single product firms
- Extension: multi-product firms
- Firm behavior: multi-product firms use simplifications
- Implications: outcomes with simplifications
- Alternative simplifications

Implications

Alternative simplification

Summary 0

Multiple agent Q-learning: structure

- Q-learning (as in Calvano et al 2020, Klein 2021, Asker et al 2022)
 - Reinforcement learning with states
 - States: prices of all agents (discrete)
 - Actions: next price to charge (discrete)
- Q-learning setup:
 - Objective (discount factor δ) $E[\sum_{t=0}^{\infty} \delta^t \pi_t]$
 - Q function (Bellman's value function $V(s) = max_a(Q(a, s)))$

$$Q(a,s) = E(\pi|a,s) + \delta E[\max_{a'}Q(a',s')|a,s)]$$

- Iterative learning 1 (learning rate $\alpha)$

$$Q_{t+1}(a,s) = Q_t(a,s) - \alpha(\pi_t + \delta E[\max_{a'} Q(a',s')|a,s)] - Q_t(a,s))$$

- Experimentation ('off-policy learning'): ϵ -greedy

¹ in single agent problems this default to ϵ -greedy in our simulations

Implications

Alternative simplification

Summary 0

Multiple agent Q-learning: setup

- Multi-agent learning setup

- Two symmetric single product firms
- Actions: 15 potential prices
- States (memory): prices charged in time t-1
- Simulate demand from a logit
- Outcome (steady-state) metrics
 - Prices, profit and consumer surplus (loss)
 - Infer learned mechanism

Implications

Alternative simplification

Summary 0

Market outcomes: single product firms can collude

Replicate literature

- 1. Competitive: Q-learning: prices supra-competitive (Calvano et al 2020)
- 2. Independent: ϵ -greedy: prices Nash (Hansen et al 2021)
- 3. Collusive: Joint maximization

market outcomes: two single product firms market prices by product

Implications

Alternative simplification

Summary O

Market outcomes: single product firms learned strategy Replicate literature

Inferred strategy:

implied strategy from devations

Implications for policy:

market outcomes: two single product firms outcomes of learning

Implications

Alternative simplification

Summary 0

Multi-agent Q-learning: theory (Banchio Mantegazza 2022) Setup

- Prisoner's dilemma:

- Complexity comes from learning in continuous time
 - Each firm follows Q-learning with experimentation (ϵ)

duction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

Market outcomes: single product firms can collude

Replicate Banchio Mantegazza (2022)

Proposition: if $p_L < p^*(\epsilon)$, there exists a collusive pseudo-steady state

Implications

Alternative simplification

Summary O

Empirical evidence: German gasoline market

- Assad et al (2023): evidence consistent with algorithmic collusion
 - Focused on prices of E-10 gas and markets at postcodes
 - Infer adoption of algorithmic pricing in/around 2017
 - Prices increased in duopoly markets only when both adopted

Implications

Alternative simplification

Summary O

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Firm behavior: multi-product firms use simplifications
- 4. Implications: outcomes with simplifications
- 5. Alternative simplifications

Summary

- Current knowledge provides evidence of pricing algorithms achieving supra-competitive outcomes
- Evidence limited to single product algorithms

Implications

Alternative simplification

Summary O

Overview of talk

- $1. \ \mbox{Current knowledge: market outcomes with single product firms$
- 2. Extension: multi-product firms
 - Do the results extend to multi-product firms?
 - Are the strategies different?
- 3. Firm behavior: multi-product firms use simplifications
- 4. Implications: outcomes with simplifications
- 5. Alternative simplifications

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

Multi-product firms implications

- Multi-product firms using pricing algorithms
 - Each sells two products
 - Firm 1 sells products A1 and B1
 - Firm 2 sells products A2 and B2
 - Algorithm assumes they complete on each product separately
 - A_i price considers $\{A_1, A_2, B_1, B_2\}$ prices
 - B_i price considers $\{A_1, A_2, B_1, B_2\}$ price
 - Demand is shared
 - Consumers pick between all four products (A1, A2, B1, B2)
 - Assume logit demand as before
- Repeat simulation assuming the firm sells two similar goods
 - Calvano et al. (2022) setup as before
 - Significant complexity: $15^4=50,625 \mbox{ states}$ and $15^2=225 \mbox{ actions}$

ntroduction

Rasics

Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

 $Multi-product\ firms\ using\ multi-product\ algorithms\ \dots$

... result in supra-competitive price

symmetric multi product firms

market prices by product

... can disadvantage consumers

symmetric multi product firms outcomes of learning

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

Understanding firms strategy

- Simplified model similar to theory model
 - Two (2) prices per product (Nash and Collusive)
 - |Action space| is 4 and |state space| is 16
 - Will consider two type of demand models:
 - Demand is shared
 - Demand is unrelated (true DGP has zero cross-price elasticity)
- Purpose of this simulation
 - Simple model replicates the complex model
 - Understand the strategies learned

duction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

Simulations: simplified model replicates complex model

Multi-product firms using multi-product algorithms result in **supra-competitive** price

... can disadvantage consumers

troduction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

Simulations: learned strategy

Understanding firms strategy

- Strategy: Action taken under a given State (prices of all 4 products)
 - e.g. Agent 1's strategy: prices A_1 and B_1 given prices for A_1 , B_1 , A_2 and B_2
- Will consider two statistics
 - 1. Response to deviations from other firm reducing price
 - 2. Regression of Pr(charge C) as function of state

Rasics Extension: multi-product firms 00000000

Simplification evidence

Implications

Alternative simplification

Summary

Simulations: simplified model learned strategies

A deviation in one product ...

... result in reactions on **both** prices

... Pr(charge C) depends all **four** prices

Regression: Proability of Agent Charging C conditional on St

Implications

Alternative simplification

Summary 0

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Firm behavior: multi-product firms use simplifications
- 4. Implications: outcomes with simplifications
- 5. Alternative simplifications

Firms using multi-product algorithms can reach supra-competitive prices

- Strategy learned consistent with Multi-Market Contact
- Policy makers/researchers: observed prices depend on all products (own and competitive)
- Firms: solving a complex learning problem

Summary

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Firm behavior: multi-product firms use simplifications
 - Direct: single product algorithms for marketing decisions
 - Indirect: scraped prices of related goods on amazon.com
- 4. Implications: outcomes with simplifications
- 5. Alternative simplifications

Implications

Alternative simplification

Summary O

Pricing in multi-product firms

- Multi-product pricing is difficult
 - Cross-price elasticity estimates are imprecise (Hitsch et al 2021)
 - Curse of dimensionality: multi-product learning
 - Consider n products with n_p potential prices each: action is a price vector
 - Multi-product pricing: optimize over n_p^n feasible price vectors
 - No current tools to solve complexity
- Multi-product firms often use simplifications
 - DellaVigna and Gentzkow (2019) ignore cross-price efforts
 - Compiani and Smith (2022) provide evidence of single product pricing
 - In offline markets: category management practices
- Conjecture: multi-product firms use single-product algorithms
 - Reduce complexity from exponential to multiplicative
 - *n* single-dimensional optimization problems

Conjecture: multi-product firms use single product pricing

- Academic: exploration with unknown demand
 - Most assume single product (e.g., operations: Besbes and Zeevi 2009, marketing: Misra et al 2019)
 - Multi-product models assume logit demand (see Jain et al 2023)
- We will show the following evidence
 - Pricing patents
 - Not limited to pricing: evidence in advertising markets
 - Observed pricing patterns

Implications

Alternative simplification

Summary 0

Conjecture: multi-product firms use single product pricing

Walmart labs patent US 2019 / 0172082 $\mathrm{A1^4}$

- 2019 patent: "systems and methods for dynamic pricing"
 - Describes software and hardware required
 - Thompson sampling algorithm (bandit)
- Constant elasticity demand model assumed

$$d_i(p_i) = f_i \left(\frac{p_i}{p_{0,i}}\right)^{\gamma_{*,i}}$$

- d_i : demand; p_i : price; $p_{0,i}$: baseline price (defined as prior day price)
- f_i demand at baseline; $\gamma_{*,i}$: own price elasticity
- Does not account for cross price elasticity
 - Algorithm in public paper² only consider own price elasticity (slide 12)
 - Follow up patent (2021): competitor price triggers and personalized prices ³

²https://arxiv.org/abs/1802.03050

³https://patents.google.com/patent/US10896433B2

⁴https://patents.google.com/patent/US20190172082A1

Summary O

Conjecture: multi-product firms use single product algorithms: extends beyond pricing

身長と体重で選ぶマルチサイズアイテム

- ZOZO is the largest fashion e-commerce company in Japan⁵
- Recommendation problem:
 - There are 3 slots in each page {left, center, right}

- 80 candidate items to select from
- Context effects: position, choice set likely exist in this setting

⁵Source: (https://github.com/st-tech/zr-obp)

Summary O

Conjecture: multi-product firms use single product algorithms: extends beyond pricing

- ZOZO's optimization problem
 - Action: permutation of items
 - Curse of dimensionality: $^{80}P_3$ permutations, or $\sim 512k$ actions
- Their solution: top-3 Thompson sampling
 - Product by product bandit
 - Reduces action space to 80 or 0.02% of full problem
 - Assign {left, center, right} as $\{\#1, \#2, \#3\}$
- Implications from a randomized field experiment
 - Released data from 7-day experiment in late Nov. 2019
 - Position effects (L, M, R) exists and are heterogeneous
 - Solving permutorial problem could increase overall CTR by at $\mathsf{least}^6\ 10\%$

⁶insufficient data to estimate full choice set effects

Alternative simplification

Summary O

Conjecture: multi-product firms use single product pricing Prices on amazon.com

- Chen et al (2016) scrape amazon.com prices in 15 minute intervals
 - 1,955 leading products with a total of 33,246 sellers in 2014
 - 1,155 products with amazon.com as the seller
 - Define lowest price as lowest price of all other sellers
- Test-statistic to identify algorithmic sellers
 - Correlation between amazon price and lowest from other sellers
 - Correlation with the lowest price (prime only) is 0.34 (0.32)

Summary O

Conjecture: multi-product firms use single product pricing

Prices on amazon.com

- Add metadata for amazon (He and McAuley 2016, McAuley et al 2015)
 - Identify related products as (examples on slide 13)
 - Also bought
 - Also viewed
 - Bought together
 - Buy after viewing
 - Matched products: 906 across 7 categories
- Did Amazon in 2014-15 set prices jointly across all products?

Extend Chen et al (2017) to compare prices across related products

Correlation between amazon's price for product 1 and \dots

- ... Amazon's price for related product 2
- ... Lowest price for related product 2

consistent Pricing patterns with singleproduct pricing

50

100

Specification

150

1. None 2. Date 3. Date * Hour ategory * Date

3. Trimmed (5%) 4. Trimmed (10%)

Ó

4. Cat * Hour

5 Cat egory ٠ŕ 1. All Data 2. Winsorized (5%)

(c) Timeseries Fixed Effects

(d) Robustness Data Selection

Simplification evidence

200

Alternative simplification

Extension: multi-product firms 0000000 Simplification evidence

Implications

Alternative simplification

Summary O

Amazon Japan's slide for sellers in 2018

🕨 価格の自動設定の例 - ルールタイプ : 競争力がある

Implications

Alternative simplification

Summary O

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Firm behavior: multi-product firms use simplifications
- 4. Implications: outcomes with simplifications
- 5. Alternative simplifications

Summary

- Evidence that firms use single-product algorithms
- Simplifies complexity from exponential to multiplicative

Implications •0000000 Alternative simplification

Summary 0

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Firm behavior: multi-product firms use simplifications
- 4. Implications: outcomes with simplifications
 - Theory: collusive steady state is not stable
 - Simulation: prices can be sub-competitive
- 5. Alternative simplifications

Introduction 00000 Simplification evidence

Implications 0000000 Alternative simplification

Summary O

Setup: theory and simulation

Assumed structure

- Multi-product firms: 1 and 2
 - Each sells two products
 - Firm 1 sells products A1 and B1
 - Firm 2 sells products A2 and B2
- Assume single product algorithms
 - A_i price (P_{Ai}) considers $\{A_1, A_2\}$ prices $(\{P_{A1}, P_{A2}\})$
 - B_i price (P_{B_i}) considers { B_1, B_2 } prices ({ P_{B1}, P_{B2} })
 - Assume complete on each product separately
 - Enforces zero coordination between P_{Ai} and P_{Bi}
- True DGP: demand is shared
 - Consumers observe all prices $(P_{A1}, P_{A2}, P_{B1}, P_{B2})$
 - Consumers pick between all four products (A_1, A_2, B_1, B_2)

troduction Basics Extension: multi-product firms

Simplification evidence

Implications 00000000 Alternative simplification

Summary O

Theory: two product prisoner's dilemma

Cross product substitution

- Pricing setup
 - Each product has one of two prices p_H or p_L (p_L is Nash)
 - Each firm follows Q-learning with experimentation ($\epsilon)$
- Demand setup
 - Each consumer has a "home" product
 - Number of consumers for each product scaled to 2 (as before)
 - 2δ consumers willing to switch to lower priced "non home" product
 - If $max(P_{A1}, P_{A2}) = p_H$ and $min(P_{B1}, P_{B2}) = p_L \Rightarrow 2\delta$ consumers switch from product A to product B

troduction Basics Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary 0

Theory: two product prisoner's dilemma Cross product substitution

Implication for competition between P_{B1} , P_{B2} (symmetric for P_{A1} , P_{A2})

- Case 1: If both P_{A1}, P_{A2} are p_{H} ,

$$P_{B2}$$

$$p_{H} \equiv 1 \qquad p_{L}$$

$$P_{B1} \qquad p_{H} \equiv 1 \qquad \frac{1,1}{p_{L}} \qquad 0,2(p_{L}+\delta)$$

$$2(p_{L}+\delta),0 \qquad p_{L}+\delta, p_{L}+\delta$$

- Case 2: If either P_{A1} , P_{A2} are p_L ,

$$P_{B2}$$

$$p_{H} \equiv 1 \qquad p_{L}$$

$$P_{B1} \qquad p_{H} \equiv 1 \qquad \boxed{\begin{array}{c|c} 1 - \delta, 1 - \delta & 0, 2p_{L} \\ p_{L} & 2p_{L}, 0 & p_{L}, p_{L} \end{array}}$$

Implications

Alternative simplification

Summary 0

Theory: two product prisoner's dilemma Cross product substitution

- **Result:** For any p_L , there exists $\underline{\delta} \in [0, 1 p_L)$ such that if $\delta > \underline{\delta}$, the unique steady state is for both firms to charge price p_L in both markets
- Intuition:
 - From the single product proposition we had if p_L is low enough, there are not sufficient incentives for the algorithm to play Nash
 - Cross-product substitution provides exactly that incentive
- Implication: when multi-product firms use single product algorithms, supra-competitive prices are harder to sustain

Implications 000000000 Alternative simplification

Summary 0

Simulations: implications for market outcomes

Multi-product firms implications

- Multi-product firms using single product algorithms
 - Each sells two products
 - Firm 1 sells products A1 and B1
 - Firm 2 sells products A2 and B2
 - algorithm assumes they complete on each product separately
 - A_i price considers $\{A_1, A_2\}$ prices
 - B_i price considers $\{B_1, B_2\}$ prices
 - forces zero-correlation between A_i and B_i
 - demand is shared
 - consumers pick between all four products (A_1, A_2, B_1, B_2)
 - assume logit demand as before
- repeat simulation assuming the firm sells two similar goods
 - Calvano et al. (2022) setup as before

Introduction 00000 Rasics

Extension: multi-product firms 0 0000000 Simplification evidence

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

Multi-product firms using single product algorithms ...

... Result in prices at or below Nash

... Do not disadvantage consumers

symmetric multi product firms market prices by product

symmetric multi product firms outcomes of learning

Implications

Alternative simplification

Summary 0

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Conjecture: multi-product firms use single-product algorithms
- 4. Implications: outcomes with single product versus multi-product algorithms
- 5. Alternative simplifications

Summary

- Single-product algorithms reverse prior results
- Supra-competitive prices less likely when firms simplify pricing

Implications

Alternative simplification

Summary 0

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Conjecture: multi-product firms use single-product algorithms
- 4. Implications: outcomes with single product versus multi-product algorithms
- 5. Alternative simplifications: firms set constant markups

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

- Alternative simplification: constant markups
 - Multi-product pricing problem one dimensional
 - Consistent with logit demand
 - Could include potentially unrelated products
- Implications for a pricing game
 - Assumes commitment

Introduction

Extension: multi-product firms 0 0000000 Simplification evidence

Implications 00000000 Alternative simplification

Summary 0

Setup: theory

Assumed structure

- Multi-product firms: 1 and 2
 - Each sells two products
 - Firm 1 sells products A1 and B1
 - Firm 2 sells products A2 and B2
- Assume single product algorithms
 - Assume perfect coordination between P_{Ai} and P_{Bi}
 - Firm *i* charges the same price for both A_i and B_i ($P_{Ai} = P_{Bi} = P_i$)
 - Firm *i*'s price P_i considers historical prices ({ P_1, P_2 })
- True DGP: demand is shared
 - Consumers observe all prices $(P_{A1}, P_{A2}, P_{B1}, P_{B2})$
 - Consumers pick between all four products (A_1, A_2, B_1, B_2)

Implications

Alternative simplification

Summary 0

Markup problem is similar to single product problem Theory

- Implied Prisoner's dilemma:

Firm 2
$$(P_{A2} = P_{B2})$$

 $p_H \equiv 1$ p_L
Firm 1 $(P_{A1} = P_{B1})$ $p_H \equiv 1$ $2, 2$ $0, 4p_L$
 p_L $4p_L, 0$ $2p_L, 2p_L$

- Result: identical to incentives in single-product markets!

Introduction 00000 Rasics

Extension: multi-product firms 0 0000000 Simplification evidence

Implications

Alternative simplification

Summary O

Simulations: implications for market outcomes

Multi-product firms using constant markup product algorithms ...

... Result in supra-competitive prices

symmetric multi product firms

market prices by product

Constant Markups 2.0 -1.5 mean 1.0 0.5 -0.0 B1 A2 в2 A1 setting collusion nash pro simulation nash firm

.. Disadvantage consumers

symmetric multi product firms outcomes of learning

Extension: multi-product firms

symmetric multi product firms

Rasics

Simplification evidence

Implications

Alternative simplification

Summary 0

Simulations: implications for market outcomes

Multi-product firms using constant markup product algorithms versus full information

- Constant markup models: **same profits** as a Multi-Product algorithm with less complexity

symmetric multi product firms

- Constant markup: mechanically enforces multi-market contact strategies

Implications

Alternative simplification

Summary O

Empirical markets: constant markup algorithms

- Assad et al (2021): evidence consistent with algorithmic collusion
 - Focused on prices of E-10 gas and markets at postcodes
 - Infer adoption of algorithmic pricing in/around 2017
 - Prices increased in duopoly markets only when both adopted
- German gas station data⁷
 - 15,650 gas stations between 2015 and 2020
 - Include 305 million price changes for gas (within day)
- Gas stations are multi-product firms
 - In these data all stations sell diesel, E-5 and E-10 $\,$
 - Diesel and gas are independent in short term demand

⁷https://dev.azure.com/tankerkoenig/_git/tankerkoenig-data

Introduction 00000 Rasics

Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary O

Empirical markets: constant markup algorithms

- Stylized fact 1: prices of all types of gas move together!

Introduction 00000 Rasics

Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary 0

Empirical markets: constant markup algorithms

German Gasoline Market maintained correlation as stations adopted algorithms

- Stylized fact 2: pricing algorithms maintain correlation in unrelated goods

Implications

Alternative simplification 00000000

Summary 0

Overview of talk

- 1. Current knowledge: market outcomes with single product firms
- 2. Extension: multi-product firms
- 3. Conjecture: multi-product firms use single-product algorithms
- 4. Implications: outcomes with single product versus multi-product algorithms
- 5. Alternative simplifications: firms set constant markups

Summary

- Outcome: markup algorithms can result in supra-competitive prices
 - Enables multi-market contact strategies
- Simple empirical tests

ntroduction

Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary •

Summary

Rasics

- Multi-product pricing can reach supra-competitive outcomes
 - Strategies learned include multi-market contact
 - However, significant complexity
- Simplification: multi-product firms use single-product algorithms
 - Show evidence in practice
 - Multi-product firms using single-product algorithms can reach sub-competitive prices

troduction

Extension: multi-product firms

Simplification evidence

Implications

Alternative simplification

Summary •

Summary

- Multi-product pricing can reach supra-competitive outcomes
 - Strategies learned include multi-market contact
 - However, significant complexity
- Simplification: multi-product firms use single-product algorithms
 - Show evidence in practice
 - Multi-product firms using single-product algorithms can reach sub-competitive prices
- Alternative: multi-product firms constant markup algorithms
 - Can reach supra-competitive prices
 - Achieve multi-product price profits with reduced complexity
- Policymakers/empirical research: markets to study
 - Consider co-movement of prices: perfect (constant markup), positive (multi-product), zero (single product)

Appendix •00000000000

Appendix

Simulations: implications for market outcomes

Multi-product algorithm derived strategies: steady state pricing

- steady state in this simulation does not mean single prices for a good
- example of a 2 time period inferred cycle:
 - Firm 1's strategy (state \rightarrow action) at two states
 - 1. $\{p_{a1}, p_{b1}, p_{a2}, p_{b2}\} \rightarrow \{p_{a1}^{\alpha}, p_{b1}^{\alpha}\}$
 - 2. $\{p_{a1}^{\alpha}, p_{b1}^{\alpha}, p_{a2}^{\alpha}, p_{b2}^{\alpha}\} \rightarrow \{p_{a1}, p_{b1}\}$
 - Firm 2's strategy at two states
 - 1. $\{p_{a1}, p_{b1}, p_{a2}, p_{b2}\} \rightarrow \{p_{a2}^{\alpha}, p_{b2}^{\alpha}\}$
 - 2. $\{p_{a1}^{\alpha}, p_{b1}^{\alpha}, p_{a2}^{\alpha}, p_{b2}^{\alpha}\} \rightarrow \{p_{a2}, p_{b2}\}$
 - steady state prices osculate between $\{p_{a1}, p_{b1}, p_{a2}, p_{b2}\}$, $\{p_{a1}^{\alpha}, p_{b1}^{\alpha}, p_{a2}^{\alpha}, p_{b2}^{\alpha}\}$
 - say at time 1 we are at prices state $\{p_{a1}, p_{b1}, p_{a2}, p_{b2}\}$
 - time 2: Firm 1 sets $\{p_{a1}^{\alpha}, p_{b1}^{\alpha}\}$ and Firm 2 sets $\{p_{a2}^{\alpha}, p_{b2}^{\alpha}\}$
 - time 3: Firm 1 sets $\{p_{a1}, p_{b1}\}$ and Firm 2 sets $\{p_{a2}, p_{b2}\}$

- ...

- cycle does not represent a mixed pricing strategy

Simulations: implications for market outcomes

Multi-product algorithm derived strategies: steady state pricing

- cycles (3-4 time periods) of prices as steady state outcomes sample cycles

- demand shared: correlation⁸ between a firm's prices = 0.11 (0.07,0.14)
- demand not shared: correlation between a firm's prices = -0.01 (-0.05, 0.03)
- empirical implications: steady state multi-product prices:
 - timing: prices good change at the same time
 - direction: if demand is (not) shared then prices are (not) correlated

⁸to avoid trivial correlations we consider cycles more the 2

Simulations: implications for market outcomes

Multi-product firms can punish deviations in both products even in independent markets

- deviations to steady state prices when products are unrelated in demand

- consistent with multi-market contact

overview of talk

- 1. conjecture: multi-product firms use single product algorithms
- 2. theory: could using single product algorithms be optimal?
- 3. simulations: outcomes with single product versus multi-product algorithms
- 4. implication: implied tests in empirical markets
 - stylized facts with multi-product algorithms
 - timing: prices move together (cycles)
 - without shocks: correlations in prices for *related* goods
 - with shocks: correlations in prices including unrelated goods
 - ▶ objective: understand if these are met in the German gasoline market

implication: markets likely with multi-product algorithms German Gasoline Market

- ► Assad et al (2021): evidence consistent with algorithmic collusion
 - focused on prices of E-10 gas and markets at postcodes
 - ▶ infer adoption of algorithmic pricing in/around 2017
 - prices increased in duopoly markets only when **both** adopted
- German gas station data⁹
 - 15,650 gas stations between 2015 and 2020
 - include 305 million price changes for gas (within day)
- gas stations are multi-product firms
 - \blacktriangleright in these data all stations sell diesel, E-5 and E-10
 - diesel and gas are *independent* in short term demand

⁹https://dev.azure.com/tankerkoenig/_git/tankerkoenig-data

Appendix 0000000000000

implication: markets likely with multi-product algorithms German Gasoline Market

stylized fact 1: prices of all types of gas move together!

Appendix 00000000000000

implication: markets likely with multi-product algorithms

German Gasoline Market

- ▶ we find an increase in number of price changes in 2017
- however gas and diesel continue to move together

Appendix 000000000000000

implication: markets likely with multi-product algorithms German Gasoline Market maintained correlation as stations adopted algorithms

stylized fact 2: pricing algorithms maintain correlation in unrelated goods

summary

- 1. conjecture: multi-product firms use single product algorithms
 - show evidence consistent with single product algorithms in practice
- 2. theory: could using single product algorithms be optimal?
 - for a general problem no!
- 3. simulations: implications for market outcomes
 - multi-product firms using single product algorithms can reach sub-competitive prices
 - multi-product firms using multi-product algorithms can reach supra-competitive prices
- 4. implication: markets likely with multi-product algorithms
 - steady state prices move at the same time
 - without price shocks: correlations in prices across related products
 - ▶ with price shocks: correlations in prices across unrelated products

Conjecture: multi-product firms use single product algorithms: prices on amazon.com

Note: examples where prices are correlated

products with high correlation to related products

amazonprice — lowestprice — relatedlowestprice

Walmart labs algorithm

https://arxiv.org/abs/1802.03050

Algorithm 1: Architecture of the proposed dynamic pricing engine.

Input: A basket \mathcal{B} , and time period T over which we intend to maximize cumulative revenue

1 for $t \leftarrow 1$ to T do

- 1. For each item $i \in \mathcal{B}$ calculate their demand forecasts using the demand forecaster.
- 2. For each item $i \in \mathcal{B}$ calculate their price elasticities $\gamma_{\star,i}$.
- 3. Solve the MAX-REV optimization problem, shown in Equation (7) to obtain new prices \mathbf{p}_t .
- 4. Apply these prices and observe the revenue obtained R_t .

2 end

Conjecture: multi-product firms use single product pricing

Examples of related products (He and McAuley 2016 and McAuley et al 2015)

Philips AVENT BPA Free Classic Infant	The First Year's Infant To Toddler Tub with
Starter Gift Set	Sling, Blue
Camco 40043 TastePURE Water Filter with	Camco 40055 Brass Water Pressure Regula-
Flexible Hose Protector	tor
American Baby Company 100% Cotton	American Baby Company 100% Organic
Value Jersey Knit Fitted Portable/Mini	Cotton Interlock Fitted Pack N Play Sheet,
Sheet, Celery	Natural
Darice 80-Piece Deluxe Art Set	Pro Art 18-Piece Sketch/Draw Pencil Set
Dove Bar Soap, Sensitive Skin Unscented, 4	Quilted Northern Ultra Plush Bath Tissue,
Ounce, 16 Count	48 Double Rolls
Minecraft: Essential Handbook: An Official	Minecraft: Redstone Handbook: An Official
Mojang Book	Mojang Book
Foscam FI9821P Plug & Play	Foscam FI8910W Pan & Tilt
Megapixel 1.0 Megapixel 1280 × 720	IP/Network Camera with Two-Way Audio
Wireless/Wired Pan/Tilt IP Camera with	and Night Vision (Black)
IR-Cut (Black)	
NETGEAR N450 WiFi DOCSIS 3.0 Cable	NETGEAR N600 WiFi DOCSIS 3.0 Cable
Modem Router (N450-100NAS)	Modem Router (C3700)

also bought also viewed bought together buy after viewing